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Introduction

During the last 20 years, the physics of dilute gases has seen major advances in two fields: laser cooling of
atomic and molecular samples and femtosecond chemistry. In both cases, a strong motivation is to use laser
light in order to achieve a better control of the system by reducing the energy distribution of the various degrees
of freedom. In this context, two fundamental processes, i.e., photoassociation and photodissociation, or in other
words formation and breaking of the chemical bond, have motivated a lot of theoretical and experimental stud-
ies. Photodissociation of diatomic and small polyatomic molecules is an ideal field for investigating molecular
dynamics at a high level of precision. In this poster we present the general theoretical description of the pho-
todissociation process. In Figures from 1. to 5. we show the various types of photodissociation schemes using
calculated by us adiabatic potential energy curves of the lithium dimer.

Transition probability

The time-dependent Schrödinger equation for the wavefunction describing the evolution of our molecular sys-
tem, Φ(R, r, t) is given by expression

[

ıh̄
∂

∂t
− Ĥ(R, r)

]

Φ(R, r, t) = 0 (1)

where the molecular Hamiltonian Ĥ(R, r) includes all nuclear R and all electronic r degrees of freedom. When
the laser light is switched off, Ĥ is time-independent and therefore Φ(R, r, t) separates into a time-independent
part and time-dependent phase factor,

Φa(R, r, t) = e−ıEat/h̄φa(R, r). (2)

The time-independent Schrödinger equation can be written as

[Ĥ(R, r) −Ea]φa(R, r) = 0 (3)

where φa(R, r) are the stationary wavefunctions and Ea are eigenenergies. When the light beam is switched
on at time t = 0 the total Hamiltonian can be expressed as Ĥtot(t) = Ĥ + ĥ(t), where the perturbation ĥ(t)

represents the time-dependent interaction of the electromagnetic field with the molecule. The molecular system
is perturbed by ĥ(t), which induces transition between eigenstates |φa〉. In order to solve the equation (1),
including the perturbation, the molecular wavefunction is expanded in terms of the φa(R, r),

Φ(R, r, t) =
∑

a

aa(t)φa(R, r)e−ıEat/h̄ (4)

with time-dependent coefficients aa(t). We obtain these coefficients inserting expansion (4) into (1) with to-
tal Hamiltonian Ĥtot(t). Multiplication with 〈φa| and using the orthogonal relation yields the following set of
coupled equations,

ıh̄
d

dt
aa(t) =

∑

a′

haa′(t)aa′(t)eıωaa′t, (5)

where the time-dependent matrix elements of the perturbation operator,

haa′(t) = 〈φa|ĥ(t)|φa′〉 =

∫

dR drφ∗a(R, r) ĥ(t)φa′(R, r), (6)

couple state |φa〉 with all other state |φa′〉. The transition frequencies ωaa′ are defined by ωaa′ = (Ea − Ea′)/h̄.
The time-dependent coefficients aa(t) together with the stationary basis functions φa(R, r) describe completely
the state of the molecule at each instant t [1]. We consider the perturbation ĥ(t) = d̂ ·E0 cosωt within the electric
dipole approximation, where d̂ is the electric dipole operator of the molecule and E0 is the electric field vector of
the light beam [2]. Insertion of above expression into (6) yields

haa′(t) = daa′ cosωt, daa′ = 〈φa|E0 · d̂|φa′〉 = E0〈φa|e · d̂|φa′〉, (7)

where E0 = |E0| and e being a unit vector in the direction of the electric field. Using equations (7) in (5) and
replacing the coefficients aa′(t) on the right-hand side by their initial values at t = 0 (ai(0) = 1 and aa6=i(0) = 0),
the evolution of each final state (f 6= i) is given by the equation

ıh̄
d

dt
af (t) = dfi cosωt eıωfit. (8)

From above expression and the fact that the probabilities |aa|
2 do not significantly change while the light beam

is switched on (|ai(t)|
2 ≈ 1 and

∑

f 6=i |af(t)|
2 � 1), we obtain the time-dependent probability for making a

transition from initial state |φi〉 to final state |φf 〉 under the influence of the photon beam with frequency ω

Pfi(t) = |af (t)|
2 =

(

dfi

h̄

)2
sin2[(ωfi − ω)t/2]

(ωfi − ω)2
. (9)

Using the representation of well known for the Dirac delta-function [2] we can rewrite (9), in the limit as t goes
to infinity, as

Pfi(t) =
π

2

(

dfi

h̄

)2

t δ(ωfi − ω). (10)

The probability rises linearly with time and therefore it leads to a constant transition rate kfi = d
dtPfi, transition

probability per unit time interval [3].

The photodissociation cross section

In order to determine the absorption cross section σ(ω) we should consider a several assumptions. The light
beam propagates along the z-axis through a cavity containing the molecular lithium gas. N is the total number
of molecules in the volume of the cavity V . We also assume that the beam produces the monochromatic light
with frequency ω = ωfi. Let us consider a thin slice perpendicular to the z-axis with length dz and area A.
The slice is sufficiently thin that the intensity I (energy crossing through a unit area per unit time) as well as
the energy density W (energy per volume) are approximately constant within the slice [2]. If the energy in the
slice is S = AdzW , the result of molecular transition from initial state |φi〉 to final state |φf〉 is decreasing it to
expression

dS = −N
Adz

V
h̄ωfi kfi dt = Adz dW (11)

within the time interval dt, where NAdz/V is the number of molecules within the slice, h̄ωfi is the absorbed
energy per molecule and kfi is the transition rate. Using the above equation in which we insert (7) and transition
rate expression we get the following term

dW = −ωfi δ(ωfi − ω) dt
πNE2

0

2h̄V
|〈φf |e · d̂|φi〉|

2, (12)

where E0 is the amplitude of the electric field and e is a unit vector in the direction of E0. Inserting the relation
E2

0 = 2W/ε0 [2], where ε0 is the electric permittivity, we obtain

dW

dt
= −ωfi δ(ωfi − ω)

πNW

h̄ε0V
|〈φf |e · d̂|φi〉|

2. (13)

Using equations (13) and some simple expressions dW/dt = dI/dz, W = I/c, dI/dz = −ρ σ(ω) I , where ρ =

N/V is the density of the lithium gas in the cavity [1, 2], we finally can define the absorption cross section as

σ(ω) =
π

h̄ε0c
ωfi δ(ωfi − ω) |〈φf |e · d̂|φi〉|

2. (14)

Within the Born-Oppenheimer approximation [4, 5, 6] the time-independent molecular wavefunctions for the
various electronic states can be written as

φkl(R, r) = Ψnu
kl (R)ψel

k (r,R), (15)

where ψel
k is the k-th solution of the electronic Schrödinger equation and Ψnu

kl is a distinct solution of the nuclear
Schrödinger equation for this particular electronic state with energy Ekl. The index l labels the particular
solution of the nuclear Schrödinger equation. Inserting (15) into (14) yields the following expression for the
absorption cross section for a transition from initial state |φkili〉 to final state |φkf lf 〉,

σ(ω) =
π

h̄ε0c
ωkf lf ,kili δ(ωkf lf ,kili − ω) |〈Ψnu

kf lf (R)|µe
kfki

(R)|Ψnu
kili(R)〉|2, (16)

where µe
kf ki

≡ ~e · ~µkf ki
is defined as the transition dipole moment function,

µe
kf ki

(R) = |〈ψel
kf

(r,R)|d̂|ψel
ki
(r,R)〉|2. (17)

Below we present the necessary scheme of the calculation of absorbtion cross section in bound-bound transitions
[1]:

• The adiabatic potential energy curves Vki
(R) and Vkf

(R) for the electronic states between which the transi-
tion occurs.

• The transition dipole moment function ~µkf ki
(R).

• The nuclear wavefunctions Ψnu
kili

(R) and Ψnu
kf lf

(R).

• The overlap of the nuclear wavefunctions and transition dipole moment function, 〈Ψnu
kf lf

|µe
kf ki

|Ψnu
kili

〉.

Photodissociation schemes

Fig. 1. The single UV photon direct photodissociation scheme. The photon creates a single quantum state in the
upper electronic state.

Fig. 2. The electronic predissociation scheme (Herzberg’s type I predissociation). The photon excites first a
binding electronic state. The molecule undergoes a radiationless transition (rt) from the binding to the repulsive
state and subsequently decays.

Fig. 3. The vibrational predissociation scheme (Herzberg’s type II predissociation). The photon creates a
quasi-bond state in the potential well which decays either by tunneling (tn) through the barrier or by internal
vibrational energy redistribution (IVR).

Fig. 4. Scheme of unimolecular decay induced by electronic excitation. The photon creates a bound level in the
upper electronic state which subsequently decays as a result of radiationless transition (rt) to the highly excited
vibrational-rotational quantum level above the dissociation threshold of the electronic ground state.

Fig. 5. Scheme of unimolecular decay induced by electronic excitation. The highly excited quantum state
above the dissociation threshold is created directly by pumping a large amount of energy into the molecule by
single-photon excitation of overtone vibrations.

The photodissociation cross section

Let us consider the situation that the photon excites states with energies above the dissociation threshold. In the
continuum part of the molecular Hamiltonian, the absorption spectrum becomes a continuous function of the
energyEf = Ei+h̄ω. It rises that the nuclear wavefunctions are continuum wavefunctions which asymptotically
behave like free waves and for each final energy Ef there are several possible dissociation channels represented
by degenerate solutions of the nuclear Schrödinger equation. In order to expand the time-dependent molecular
wavefunction Φ(R, r, t) for bound-free transition in terms of orthogonal and complete stationary wavefunctions
φa(R, r) we proceed in the same way as for the bound-bound transition. We should remember that the expansion
functions for the nuclear part of the total wavefunction are now continuum wavefunctions [7, 8]. After equa-
tion (4), the total time-dependent molecular wavefunction Φ(R, r, t) is expanded within the Born-Oppenheimer
approximation as

Φ(R, r, t) = ai(t)ψi(r,R) Ψi(R, Ei) e
−ıEit/h̄ +

∫

dEf

nmax
∑

n=0

af(t, Ef , n)ψf(r,R) Ψf(R, Ef , n) e−ıEf t/h̄. (18)

The first part of above expression describes the initial state with energy Ei before the light beam is switched
on and the second term represents the total wavefunction in the upper electronic state. The initial conditions
for the corresponding time-dependent coefficients are ai(0) = 1 and af(0, Ef , n) = 0 for all energies Ef and
all vibrational channels n. The sum over a in (4) is replaced in (18) by an integral over Ef and a sum over
n. The integral over Ef reflects the fact that the spectrum in the upper electronic state is continuous and the
summation over all open vibrational channels n accounts for the degeneracy of the continuum wavefunctions
[1]. Because of the phase factor e−ıEf t/h̄ governs the time dependence of all degenerate final states, the laser light
excites resonantly all states having the same total energy Ef but different outgoing vibrational channels n. This
is taken into account in the final expression for the total photodissociation cross section

σtot(ω) =
∑

n

σ(ω, n) (19)

with the partial photodissociation cross section given by

σ(ω, n) =
ρπ

h̄ε0c
ωfi δ(ωfi − ω) | 〈 Ψf(Ef , n) | µe

fi | Ψi(Ei) 〉 |
2, (20)

where the factor ρ = (2πh̄)−1 and the rest terms of above equation have the same meaning as in (16). Integrating
(20) over an energy interval dEf we finally obtain

σ(ω, n) = C Ephoton | t(Ef , n) |2, (21)

where C = ρπ/h̄ε0c is a constant, and

t(Ef , n) = 〈 Ψf(R, r, Ef , n) | µe
fi(R, r) | Ψi(R, r, Ei) 〉 (22)

is the partial photodissociation amplitude [3]. In the end we can define final vibrational state distributions for
fixed frequency ω, P (ω, n) = σ(ω, n)/σtot(ω).

The time-dependent wavepacket

We consider the time-dependent nuclear Schrödinger equation in the form

[

ıh̄
∂

∂t
− Ĥ(R)

]

Θ(R, t) = 0 (23)

where Θ is a time-dependent wavepacket evolving on the adiabatic potential energy curve of the excited elec-
tronic state. We can define the wavepacket as a coherent superposition of stationary states, each being multiplied
by the time-evolution factor e−ıEt/h̄ [3, 9]. The construction of the time-dependent wavepacket can be given as

Θf(R, r, t) =

∫

dEf

nmax
∑

n=0

c(Ef , n) Ψf(R, r, Ef , n) e−ıEf t/h̄, (24)

Above equation is the formal analogue of equation (4) and Θf(R, r, t) is a solution of (23) because each stationary
wavefunction Ψf(R, r, Ef , n) is an eigenfunction of Ĥ with the energy Ef . In the next step we determine the
initial condition in order to calculate coefficients c(Ef , n),

Θf(R, r, t = 0) = µe
fi Ψi(R, r, Ei). (25)

The initial condition informs us that the wavepacket at its start in the upper electronic state equals the wave-
function of the parent molecule, Ψi(R, r, Ei), multiplied by the transition dipole function µe

fi(R, r). Using the
equation (24) and the initial condition (25) we obtain the relation

c(Ef , n) = ρ〈 Ψf(Ef , n) | µe
fi | Ψi(Ei) 〉 = ρ t(Ef , n), (26)

where the amplitudes t(Ef , n) are defined in (22). Multiplying (24) from the left by Θf(0) and integrating over
all nuclear coordinates gives

S(t) ≡ 〈 Θf(0) | Θf(t) 〉 = ρ

∫

dEf

nmax
∑

n=0

t(Ef , n) 〈 Θf(0) | Ψf(Ef , n) 〉 e−ıEf t/h̄, (27)

S(t) ≡ 〈 Θf(0) | Θf(t) 〉 = ρ

∫

dEf

nmax
∑

n=0

| t(Ef , n) |2 e−ıEf t/h̄, (28)

where S(t) is the autocorrelation function. Using some simple manipulations and following the equation (21)
yields the final expression for the total photodissociation cross section,

σtot(Ef) = CEphoton

∫ +∞

−∞

dt e−ıEf t/h̄ S(t). (29)

Below we present the necessary scheme of the time-dependent calculation of the photodissociation cross section:
i) Propagation of the wavepacket Θf(t) in the upper electronic state with initial condition Θf(0) = µe

fi Ψi(Ei);
ii) Calculation and Fourier transformation of the autocorrelation function S(t) in order to yield the total dis-
sociation cross section; iii) Propagation of the wavepacket until it has completely left the interaction zone and
calculation of the partial cross sections σ(Ef , n) [1].
Let us consider the photodissociation of the lithium dimer. Since the nuclear Hamiltonian is time-independent
the wavepacket at time (t+ dt) follows from the wavepacket at time t according to

Θ(t+ dt) = e−ıĤdt/h̄ Θ(t) (30)

Following Kosloff [10] the time evolution-operator is expanded in terms of Chebychev polynomials ϕk,

eX̂ ≈

K
∑

k=0

akϕk(X̂), (31)

where X̂ = −ıĤdt/(h̄s), s is a scaling factor and the expansion coefficients ak are special complex numbers. The
Chebychev polynomials satisfy the recursion relation ϕk(X̂) = 2X̂ϕk−1(X̂) + ϕk−2(X̂), starting with ϕ0(X̂) = 1

and ϕ1(X̂) = X̂ . Inserting (31) into (30) we obtain the wavepacket at (t+ dt)

Θ(t+ dt) ≈
K

∑

k=0

akΘ
(k)(t+ dt) (32)

where we have defined Θ(k)(t + dt) = ϕk(X̂)Θ(t). The Θ(k) fulfil the same recursion relation as the Chebychev
polynomials, namely

Θ(k)(t+ dt) = 2X̂Θ(k−1)(t+ dt) + Θ(k−2)(t+ dt) (33)

with Θ(0)(t+ dt) = Θ(t) and Θ(1)(t+ dt) = X̂Θ(t). Above equations provide a very convenient iteration scheme
for the wavepacket at each coordinate point.
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