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Results

SCATTERING EQUATION We have written the computer code JMATRIX implementing the method, and performed relativistic
phase shifts calculations for scattering of electrons from several types of potentials: some
E v ‘ model potentials given in analytical forms, and the approximate atomic potentials. In all cases
(Hw*erm) Wir)= ( 4 and both bases, we observe convergence of the numerical phase shift together with increasing ba-
v ‘ sis size. Moreover, the method allows for calculating phase shifts for different energies with
where V = V(r) is the radial scattering potential, vanishing faster than the Coulomb one, E is the relatively small computational time.
total energy of the projectile. Here, ¥ — W(r) is the relativistic wave function, satisfying the
following asymptotic condition: SQUARE_WELL 0 for re(a)
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Let’s start with Dirac equation:

where ¢ is the relativistic phase shift, | is the angular momentum of the projectile, x = —I

w=1, and k=./(E—me)(E+md)/ch. 3 A———

BASIS SET

Let’s choose the basis set [1]:
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We have two choices of the function ¢,: Laguerre basis, ¢, = (A1) exp(—%)L""(\r), and the Gaus-

sian basis, ¢ (Ar)! ‘v\p(—'\’i—f) LI (\4?) - so we obtain two different basis sets. Here, L|

Gaussian basis - Laguerre basis
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[ 3, (Ar) &, (\r) dr = 6,,,. However, knowledge of the biorthonormal elements 3, is not necessary.
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In such defined bases, the term

gives the tridiagonal form. Gaussian basis

These so called J-matrix elements Ji, can be written as
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where ¢ = /% . Let’s also introduce the non-relativistic J-matrix elements (but taken in the
relativistic point k), simply related to the above integrals:
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SINE- AND COSINELIKE EXPANSIONS Relativistic phase shifts compared to result obtained using direct integration [5]. Small graph:

To assure proper asymptotic behaviour, we introduce sine- and cosinelike solutions of equation: phase shift as function of the projectile energy. Clearly visble defect in the gaussian basis at
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In the above, the indexes U,C corresponds to sine- and cosinelike solutions. The solutions, ex- 2 exp(—mr)
panded in the selected basis, are as follows:
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Now, the following recursive relations are fulfilled:

> Junsh =0, 3 Junch = = @b, Jonsh + Joust = 0, Jooch + Jonch = Junortl g + Tt + Tyt oy = Ou=s,¢m > 1

POTENTIAL SCATTERING

Let us replace this scattering potential by a truncated potential operator:
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Hence, the scattering equation has the following form:
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(11“ TEh | \’\) v ()= (”) , with expanded solution: " :Z( ; " m + £ Relativistic phase shifts versus basis size, both bases (left graph and small graphs).
‘ (5 10 ) graph: phase shift as function of the projectile energy.
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In graphical form:
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Equations for m >N are automatically fulfilled, so the following equations remain:
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T+V)ona Relativistic phase shifts as function of the basis size, compared to result obtained using the
(+V¥)ixa 0 MCDF-CI method [7]. The applied potential is rather rough estimation of the real potential, thus

the results vary from each other by about 10%. We work on applying much more accurate atomic po-
tentials to the code, i.e. taken from the GRASP92 package [8].
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THE SOLUTION
The tangent of approximated phase shift is given by the formula: R e f erences

shy_y (k) + %G{E ) -1 (B) Inn-a (K)sk (K)

ey S %Gy vt (B) Jnn () o (K)
) . Horodecki, Phys. Rev. A 62, 052716 (2000)
and (I Py (Hw,‘—,f'—;)i«l) L (B} — B) bpmbuy - . Heller, H. Yamani, Phys. Rev. A 9, 1201 (1974)

. Yamani, L. Fishman, J. Math. Phys. 16, 410 (1975)

The elements s, and ¢, can be found using recursive relations mentioned above [2, 3]. Matrix G . Syty, TASK Quarterly 3 No. 3, 269 (1999)
. Krosnicki, M.Sc. thesis, Gdarsk University of Technology (1998)
.G. Strand, R.A. Bonham, J. Chem. Phys. 40 1686 (1964)
We expect, that tmsy "~ tans (approximate solution approaches the real value with increasing the - Syty, J.E. Sienkiewicz, J. Phys. B 38, 2859 (2005)
.A." Parpia, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 94, 249 (1996)

can be viewed as the matrix approximating the Green function.

basis size).




